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Abstract. First-generation radioactive ion-beam facilities have already been in operation for some time.
Advanced facilities that will deliver high-intensity radioactive nuclear beams ranging in energy from below
the Coulomb barrier to up to several hundred MeV per nucleon (MeV/u) are either starting operation,
or under construction or in the planning stage. In this paper the perspectives of using radioactive nuclear
beams to study giant resonances in nuclei far from the valley of stability are explored. In particular,
emphasis will be made on information on certain nuclear properties that can be gained from such studies.

PACS. 21.65.+f Nuclear matter – 24.30.Cz Giant resonances – 24.50.+g Direct reactions

1 Introduction

With the advent of facilities that provide radioactive nu-
clear beams, the nuclear-physics research has moved to-
wards new frontiers where new phenomena are expected
to emerge from the study of nuclei far from the valley of
stability. The study of giant resonances (GRs) in unstable
nuclei becomes thus also possible and may strongly con-
tribute to these developments. In fact, the study of GRs in
stable nuclei has been one of the major fields of research in
low-energy nuclear physics since the first systematic study
of the isovector giant dipole resonance (IVGDR) in 1947
[1,2]; the first evidence for a giant-resonance excitation
was found ten years earlier [3]. Since then this has proven
to be a quite fruitful field of research, which not only
taught us about the structure of these fundamental modes
of excitation of the nucleus but also about some funda-
mental bulk properties of nuclei and nuclear matter [4].

The experimental study of GRs in unstable nuclei pre-
sents a real challenge. Whereas it has been possible to
investigate GRs in stable nuclei by bombarding targets of
the nuclei of interest by various probes, chosen depending
on the spin and isospin structure of the multipole to be
investigated, this will not be possible with unstable nuclei
close to the proton or neutron drip line. It will be practi-
cally impossible to make targets of sufficient density to be
useful for such studies. On the other hand, experiments
can be performed in inverse kinematics, where beams of
unstable nuclei impinge on a fixed target. This technique
is now being developed for radioactive ion beams [5] but
has been used with stable beams already in order to in-
vestigate the double-phonon excitation in nuclei [6]. This
will be discussed in more detail below. Another possibility
is to use collider rings where one of the rings is used for
accelerating and storing the unstable nuclei and the other
for accelerating and storing the beams that will be used as

probes for giant-resonance excitation. Plans to build such
collider rings with electron beams exist at RIKEN and
GSI. Considering that various probes need to be used to
disentangle the various multipole strengths and their spin
and isospin structure, it is very strongly recommended
to have the option of accelerating and storing in one of
the collider rings proton, deuteron, 3He, and α beams in
addition to the electron beam. Especially for the study
of the compression modes, the isoscalar giant monopole
resonance (ISGMR) and isoscalar giant dipole resonance
(ISGDR), the use of an α beam is imperative [4].

Now that high-intensity radioactive nuclear beams will
soon be available at energies where excitation of giant res-
onances of various multipolarities and spin and isospin
structure becomes possible, the following question arises.
What new things can we hope to learn from the study
of giant resonances in nuclei far from the stability valley,
and in particular for the nuclei that are on the neutron-
rich side of this valley? Although this question may lead
to a wide variety of possible interesting answers regard-
ing various aspects of nuclear structure and properties, I
will address here only a few topics on which, I believe,
information can be gained in the first stages of research
on giant resonances in unstable neutron-rich nuclei. These
are:

– The study of the ISGMR in a long chain of isotopes
[7–9] in order to pin down the dependence of the
nuclear incompressibility on the nuclear asymmetry,
(N −Z)/A. This is important to fix the isospin depen-
dence of the effective residual nucleon-nucleon interac-
tion, e.g. by reproducing the ISGMR energies in the
doubly closed-shell nuclei 100Sn, 132Sn and 208Pb, as
well as allow a more precise determination of the in-
compressibility of nuclear matter. Also, the equation of
state of asymmetric matter may be better determined.
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Fig. 1. The results of continuum RPA calculations obtained
from ref. [12] without (dashed curve) and with (solid curve)
coupling to surface vibrations.

– Determination of Gamow-Teller (GT) strength in un-
stable neutron-rich sd- and fp-shell nuclei. This has
implications on supernova explosions and on the for-
mation of neutron stars.

– Use of giant resonances as tools to determine neutron-
skin thickness such as in the nuclear excitation of the
IVGDR by isoscalar probes, or by the excitation of
the isovector spin-flip dipole resonance (IVSGDR) in
charge-exchange reactions [10,11].

2 Multipole strength functions in unstable
nuclei

There has been a flurry of theoretical activity in the last
decade aiming at investigating the structure of unstable
nuclei. This was an anticipation of the near-future avail-
ability of the radioactive nuclear beams and the wide field
of research that would open up. The giant-resonance struc-
ture in unstable nuclei, and in particular those with an
extreme N/Z value, was studied. These calculations were
performed for doubly closed-shell nuclei in order to avoid
complications of pairing and deformation effects. The
quadrupole (see, e.g., refs. [12–18]) and dipole [19,17] re-
sponse has been calculated for 28O, and the monopole re-
sponse for a number of calcium isotopes [20,21]. All these
calculations have been performed in the self-consistent
Hartree-Fock (HF) random-phase approximation (RPA)
framework using a Skyrme-type interaction. The general
feature that emerges from these calculations is the oc-
currence of low-lying non-collective strength. This is quite
pronounced for neutron-rich drip line nuclei, but is also al-
ready evident for the less neutron-rich nuclei in the form
of the known pygmy resonances.

The new features can be qualitatively understood from
the unperturbed response functions of the neutron-rich
nuclei. In these nuclei the proton well calculated in HF
is much deeper than the neutron one due to the excess
neutrons and the n-p interaction which is stronger than

Fig. 2. RPA calculations with SkM* interaction for monopole
strength in 60Ca obtained from ref. [20].

the n-n and n-p ones. The results for 28O [22] indicate
that the proton single-particle orbitals are more deeply
bound than the neutron ones and that the shell gaps near
the Fermi surface are larger for protons than for neutrons.
Furthermore, since neutron orbitals just above the Fermi
surface are slightly unbound, neutron excitations across
the shells near the Fermi surface can lead to the threshold
strength. This is observed, for example, in the calcula-
tions for the quadrupole response in 28O [22,12]. In fig. 1,
the results of the calculations by Ghielmetti et al. [12]
are shown. The dashed curve corresponds to the results
of the continuum RPA response for the isoscalar giant
quadrupole resonance (ISGQR). The threshold strength
displays strong sharp peaks, but low-lying non-collective
strength appears in the whole excitation energy region be-
low 10 MeV. The effect of coupling to surface vibrations
(the first step in spreading) on the ISGQR is shown by
the solid curve. The shape of the main peak is broader
and the mean energy is lower. However, the non-collective
low-lying strength is hardly affected.

A similar situation occurs for the monopole response
in the Ca isotopes. The RPA monopole response has been
calculated by Hamamoto et al. for 34,40,48,60Ca [20,21] us-
ing the SkM* interaction. The monopole response for the
neutron-rich drip line nucleus 60Ca is shown in fig. 2. Al-
though the main ISGMR strength is concentrated around
20 MeV, there is clearly low-lying non-collective strength
due to neutron excitations in the region Ex ≈ 4–12 MeV.
Similar to the quadrupole case, the threshold strength de-
velops for drip line nuclei.

The variation of the electric dipole response as a func-
tion of the neutron excess was calculated in large-scale
shell-model basis by Sagawa and Suzuki [23]. The results
of these calculations are interesting because for the lighter
oxygen isotopes they can already be compared with exper-
iment.

Experimentally there is nothing known about the
multipole strength in unstable nuclei except for the re-
cent experiments done at GSI to investigate the giant
dipole resonance in neutron-rich oxygen isotopes. In these
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experiments use is made of the technique of Coulomb exci-
tation in inverse kinematics, a technique developed by the
LAND collaboration at GSI to study multiphonon excita-
tions. These experiments require a beam at an energy of
several hundred MeV/u. On bombarding a heavy target,
such as 208Pb, the projectile nuclei are excited by absorb-
ing virtual photons. This favours electric dipole excitation
and the excitation cross-section is strongly dependent on
the excitation energy. This is illustrated in fig. 3. In the
upper frame, a smoothed reproduction of the measured
18O(γ, n) cross-section is shown. In the lower frame, the
expected differential cross-section for dipole strength ex-
citation in 18O is shown when a Pb target is bombarded
with an 18O beam of 250 MeV/u and 1 GeV/u. Clearly,
the increase of the differential cross-section at the peak of
the IVGDR for the higher beam energy is drastic. There-
fore, to overcome the suppression due to the adiabatic
cut-off of the virtual photon spectrum and thus excite the
IVGDR with cross-sections comparable to those in photo-
absorption, a bombarding energy of several GeV/u is re-
quired.

In this type of experiments the decay products of the
excited projectile are measured. From the deduced four
momenta of all particles emitted after the inelastic scat-
tering, the excitation energy of projectile and target are
reconstructed. Furthermore, since the virtual photon spec-
trum can be accurately calculated the isovector dipole
strength distribution can be unfolded from the measured
differential cross-section. However, in comparing to exper-
iments it is customary to fold the theoretical response
function with the calculated virtual photon spectrum. The
data obtained by Aumann et al. for the excitation of dipole
strength in 20O and 22O at 585 and 516 MeV/u bom-
barding energy, respectively, compare rather well with the
results of Sagawa and Suzuki [23] after folding with the
virtual photon spectra.

For the study of other GRs such as the ISGQR, IS-
GMR and charge-exchange modes (see also sect. 3) reac-
tions in inverse kinematics with targets of 1H, 2H, 3H, 3He
and 4He targets are needed. The option of collider rings,
as discussed above, could indeed be very useful if one is
interested in high resolution both in energy and scatter-
ing angle. The high resolution in energy will certainly be
required if the microscopic structure of GRs is studied via
particle decay to final states in residual nuclei.

3 Applications of GRs in unstable nuclei

3.1 ISGMR and nuclear incompressibility

The incompressibility of nuclear matter, Knm, is a basic
quantity that gives a measure for the stiffness of nuclear
matter against variations in density. This quantity cannot
be measured directly, but for low nuclear temperatures it
can be determined from the strength distributions of com-
pression modes, in particular that of the ISGMR. One first
determines for a given nucleus A the nuclear incompress-
ibility KA from the measured isoscalar monopole strength
distribution. If all the monopole strength is concentrated

Fig. 3. Upper frame: The smoothed photo-absorption cross-
section of 18O [24]. Lower frame: Coulomb excitation cross-
section for 18O bombarding a 208Pb target at 250 MeV/u (dot-
ted curve) and 1 GeV/u (solid curve). From ref. [5].

in one single peak at energy E0, KA can be determined
from the relation

E0 =

√
�2KA

m〈r2〉 , (1)

where m is the nucleon mass and 〈r2〉 the mean-square
nuclear radius. Knm is then determined from the experi-
mental value of KA on basis of a theoretical concept. Note
that if KA would be independent of A, E0 ∝ A−1/3, which
is what is found experimentally in A ≥ 90 nuclei [4].

There are two models that are used to describe the
ISGMR in finite nuclei: the constrained model and the
scaling model. In the constrained model the nuclear in-
compressibility KC

A is defined as

KC
A =

[
R2 d2(E/A)

dR2

]
R=R0

,

with the constraint R2
0 = 〈r2〉m, the mean-squared mass

radius. (E/A) is the HF binding energy of the nucleus A
calculated as a function of 〈r2〉m. It can further be shown
that [25,26]

�
2KC

A

m〈r2〉m = (EC
ISGMR)2 =

m1

m−1
, (2)
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where mk is the moment of the monopole strength
weighted by the k-th power of energy

mk =
∫

dω ωkSISGMR ,

and SISGMR is the monopole strength function derived
from experiment.

In the scaling model, the vibrational motion is de-
scribed as a scaling of the radial co-ordinates, r(t) =
r0(1 + α cos ωt). In this case the nuclear incompressibil-
ity KS

A is given by [27]

�
2KS

A

m〈r2〉m = (ES
ISGMR)2 =

m3

m1
. (3)

To derive the nuclear-matter incompressibility Knm

from the nuclear incompressibility KA one can follow ei-
ther a macroscopic or a microscopic approach. We will
discuss here the macroscopic approach to illustrate the
need for the measurement of the monopole strength in
neutron-rich nuclei.

In the macroscopic approach KA is derived from the
second derivative of (E/A), the binding energy per nu-
cleon of the semi-empirical mass formula, with respect to
the radius. This will yield an expression for KA as a sum of
volume, surface, symmetry and Coulomb terms in analogy
with the semi-empirical mass formula [27]

KA = KV + KsurfA
−1/3 + Ksym

(
N − Z

A

)2

+KCoul
Z2

A4/3
+ . . . (4)

The interpretation of the various terms of this equation is
complicated [25]. For example, The relation between KV

and Knm is not straightforward but is model dependent:
KV = K(A→∞) = αKnm. In the scaling model α = 1,
while in the constrained model α = 0.7 [26]. Furthermore,
in order to determine KV accurately, the ISGMR should
be measured in a wide range of nuclei. Because of the lim-
ited A range for which the ISGMR has been measured the
separation of the various Ki terms becomes difficult since
there exists a correlation between the various Ki terms.
Although, the contribution of the symmetry term to KA

is small compared to that of the surface term, nevertheless
it has an uncertainty similar to that of KV. To remove the
ambiguity due to the correlation between KV and Ksym,
the measurement of the ISGMR strength in a long chain
of isotopes, e.g. the Sn isotopes, could help. Furthermore,
this will help fix the isospin dependence of the effective
nucleon-nucleon interaction.

To measure ISGMR strength in stable nuclei, the in-
elastic α-scattering at about 40–60 MeV/u and very for-
ward scattering angles has been the tool of choice. The
measurement of the ISGMR in, for example, unstable Sn
isotopes would require measurements in inverse kinemat-
ics again at an energy of ∼ 40–60 MeV/u and very forward
angles near and including 0◦. To increase the luminosity, a
4He gas target could be used in a ring for circulating unsta-
ble isotopes. However, as mentioned above colliding beams

of α-particles and radioactive isotopes could be used if a
collider, as discussed above, is realised.

3.2 GT strength in neutron-rich sd- and fp-shell nuclei

The accepted scenario for supernova type-II explosions is
that massive stars having masses larger than ten times the
solar mass, live for about 107 years (see ref. [28] and refer-
ences therein). During this time the various burning cycles
take place until a core of Fe-Ni, the nuclei with the highest
binding energy per nucleon, is formed. As no further burn-
ing takes place to keep the pressure, gravitational collapse
ensues. In this stage electron capture plays an important
role, leading to the neutronisation of the core. At the be-
ginning of the collapse, electron capture on free protons is
important. However, at later stages where the energy of
the electrons is such that the main GT strength can be
reached, capture on nuclei becomes important [29]. Elec-
tron capture occurs on nuclei distributed around Fe-Ni in
the upper sd- and lower fp-shell region. Therefore, it is
important to know the GT matrix elements of the transi-
tions that play a role in this case. It should be noted that
Fermi matrix elements are zero because the Fermi tran-
sitions are completely Pauli blocked. The Pauli blocking
for the GT transitions is not complete in the initial stages
of neutronisation. As nuclei become very neutron rich also
the GT transitions become Pauli blocked and further neu-
tronisation proceeds via electron capture on free protons
[30]. Gravitational collapse continues leading to an implo-
sion within τ ∼ 1 s, followed by a shock wave which blows
the mantle of the supernova leaving a neutron star at the
core. The neutrinos diffuse into outer space in a charac-
teristic time of τ ∼ 10 s.

Measuring the GT transitions mediated by the opera-
tor στ+ (GT+ transitions) requires the use of (n, p)-type
reactions at intermediate energies of around 150 MeV/u or
higher. The GT+ matrix elements for the important tran-
sitions can in principle be determined by means of the
(n, p) reaction. In fact, in some cases where targets could
be made the (n, p) reaction was used to determine the GT
matrix elements [31,30]. However, the resolution that can
be obtained is of the order of 1 MeV, not good enough to
resolve low-lying GT transitions. Furthermore, for unsta-
ble nuclei charge-exchange reactions in inverse kinematics
with neutrons as targets, are not feasible. In addition to
the (n, p) reaction itself, the (d, 2He), (t, 3He) and heavy-
ion charge-exchange reactions can be used. The (d, 2He)
reaction has been used in the past, but since two protons
from the 2He need to be measured in the outgoing channel,
it makes the reaction mechanism and experimental proce-
dure complicated. Recently, a good resolution has been
achieved of about 150 keV which is sufficient for resolv-
ing most of the low-lying fragmented strength [32]. The
(t, 3He) reaction has been used in the past with primary
triton beams at low bombarding energies [33]. The feasi-
bility of using the (t, 3He) reaction using secondary triton
beams at intermediate energies has been demonstrated re-
cently [34,35]. At these intermediate energies one expects
a proportionality between the 0◦ (t, 3He) cross-sections
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and the GT matrix elements, as has demonstrated to be
the case for the (3He, t) reaction at 150 MeV/u [36,37].
Because of the better resolution that could be achieved,
the (t, 3He) reaction is better suited than the (n, p) reac-
tion for studying low-lying fragmented GT strength [35].
With the possibility to use primary triton beams at in-
termediate energies [38] an even better energy resolution
can be expected making the (t, 3He) reaction the most
suitable reaction for measuring GT+ transition strength.

These other reactions, i.e. the (d, 2He), (t, 3He) and
heavy-ion charge-exchange reactions, allow the study of
GT+ strength in unstable nuclei with reactions in inverse
kinematics. Moreover, because of the better energy resolu-
tion and the simpler reaction mechanism and experimental
procedure, the (t, 3He) reaction becomes the reaction of
choice to study GT+ strength in unstable neutron-rich nu-
clei. This reaction lends itself to an easy implementation
in collider rings as well.

3.3 Neutron-skin thickness of neutron-rich nuclei

Determining the shape of the nuclear-matter distribution
of nuclei has been a subject of interest from the beginning
when it became clear that nuclei have finite sizes. The
charge distribution could be nicely determined with elas-
tic electron scattering [39]. Different methods have been
used to determine the neutron distribution or neutron-
skin thickness using hadronic probes (see refs. [40,11] and
references therein). In two of these methods the excitation
of GRs has been used to infer the neutron-skin thickness.

In one of these methods, use is made of the fact that
the cross-section for excitation of the IVGDR by inelastic
scattering of isoscalar probes is sensitive to the neutron-
skin thickness, ∆Rnp = (Rn −Rp). In inelastic scattering
the amplitude of the IVGDR excitation has two contribu-
tions, one due to the Coulomb interaction and the other
due to the hadronic interaction [41]. The amplitude due
to the isoscalar hadronic interaction is proportional to
∆Rnp. DWBA calculations for the 208Pb(α, α′) IVGDR
cross-section for several values of the neutron-proton radii
difference ∆Rnp show that the cross-sections are relatively
small but rather sensitive to ∆Rnp.

Krasznahorkay et al. [10,40] studied inelastic α-scat-
tering from the spherical nuclei 116,124Sn and 208Pb, and
the deformed nucleus 150Nd. The challenge in these ex-
periments is to measure in an inelastic (α, α′) experi-
ment an IVGDR excitation cross-section of a few mb sr−1

spread out over a few MeV. It is by far too small to ob-
serve it directly as an enhancement over the continuum
in the inelastic-scattering spectrum. This is the more so
since the IVGDR and the ISGMR have approximately the
same centroid energy and the ISGMR excitation differ-
ential cross-section in (α, α′) reaction is of the order of
100 mb sr−1. The IVGDR excitation cross-section can only
be determined through a measurement of the cross-section
in coincidence with γ-decay which is a very selective tool
for detecting the IVGDR. The disadvantage is that the
γ-decay branch of the IVGDR is very small, of ∼ 1%, but
is known accurately from photo-absorption experiments,

which is necessary in order to derive the IVGDR cross-
section.

In these experiments the IVGDR/ISGMR were excited
by the (α, α′) reaction at 120 MeV bombarding energy
and in the angular interval (0±3)◦. The final-state spectra
populated by γ-decay from the excitation energy region of
the IVGDR, are reconstructed from the two-dimensional
coincident (α, α′γ) spectra. The cross-sections for the ex-
citation of the IVGDR can be evaluated from the peak
corresponding to the ground-state γ-decay. Finally, by
comparing the measured and calculated cross-sections, the
∆Rnp value can be determined. The ∆Rnp values deter-
mined in this method are found to be in agreement with
values determined by other methods and also in agreement
with the theoretical values [40].

With this method also the ratio of deformation of neu-
trons to that of protons can be determined. The result for
the deformed nucleus 150Nd is

βn
2/βp

2 = 0.92 ± 0.08 .

Note that the result obtained from pion charge-exchange
reactions on polarised 165Ho is [42]

βn
2 = (0.84 ± 0.08)βp

2 .

The two experiments using very different techniques agree
in that they both find a larger deformation for protons
than for neutrons, which must be due to the repulsive
Coulomb interaction.

This method is, in principle, also useful to determine
the neutron-skin thickness of unstable radioactive nuclei
if such nuclei are available as beams with an energy ≥
40 MeV/u. In inverse kinematics, the beam of unstable
particles bombards a T = 0 target such as 4He or 12C and
the emitted γ-rays from the decay of the IVGDR excited
in the beam particle would be measured in coincidence
with the scattered beam particle. However, owing to the
very small cross-sections and the luminosities lower than
what can be obtained with stable beams, this seems to be
an impractical method for radioactive beams.

Another promising method to measure the neutron-
skin thickness of neutron-rich nuclei is suggested by the
fact that the sum rule for the spin-flip and non-spin-flip
charge-exchange dipole resonances depends on (N〈r2〉n −
Z〈r2〉p) [4]. Krasznahorkay et al. [11] have showed this in
an experiment where ∆Rnp values were obtained from an
analysis of the excitation cross-sections of the ∆L = 1
IVSGDR in Sn nuclei using the (3He, t) charge-exchange
reaction at 150 MeV/u.

The IVSGDR with ∆L = 1 mediated by the operator
[rY1στ ] has three components with ∆Jπ = 0−, 1−, 2−.
A non-energy-weighted sum rule (NEWSR) for the spin-
dipole operator involving the β− and β+ strengths is [4]:

S−(IVSGDR) − S+(IVSGDR) =
9
2π

(N〈r2〉n − Z〈r2〉p) .

(5)
Another expression involving S±(IVSGDR) can be ob-
tained from the expression for S+/S− which describes the
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Fig. 4. (3He, t) spectra on 114,116,118,120,122,124Sn obtained at
a beam energy of 150 MeV/u and at a scattering angle of a) 0◦

(only for 124Sn) and b) 1◦ (all isotopes). The solid line is a fit
taking into account the IAS, GTR and IVSGDR (label SDR
in figure) and the continuum assumed to be due to quasi-free
scattering. From ref. [11].

numerical results of the RPA calculations performed for
the IVSGDR in the Sn isotopes [43,4]

S+/S− = 0.388 − 0.012(N − Z) ,

which together with eq. (5) yield, after some algebra,

∆Rnp = (〈r2〉1/2
n − 〈r2〉1/2

p ) =

[ 0.612 + 0.012(N − Z)]ασexp − (N − Z)〈r2〉p
2N〈r2〉1/2

p

. (6)

Here, σexp is the IVSGDR experimental cross-section, and
α is a normalisation factor chosen such that for one isotope

A

‹r
2 › n1/

2  -
 ‹

r2 › p1/
2   (

fm
)

0

0.05

0.1

0.15

0.2

0.25

0.3

110 112 114 116 118 120 122 124 126

Fig. 5. ∆Rnp = (〈r2〉1/2
n −〈r2〉1/2

p ) as a function of mass num-
ber for Sn isotopes. The calculated values are indicated by
stars. The experimental values indicated by full squares are
normalised to the calculated value for 120Sn. Empty dots and
squares are experimental values. The figure is from [11], where
all symbols are explained.

the experimental value for ∆Rnp equals the theoretical
value.

In the experiment, (3He, t) spectra for the isotopes
114,116,118,120,122,124Sn were obtained at scattering angles
of 0◦ and 1◦ using a beam energy of 150 MeV/u. Spectra
are shown in fig. 4 [11]. The ∆L = 0 excitations, the
GTR and IAS, are relatively strongly excited at 0◦ and
the IVSGDR at 1◦. The spectra are deconvoluted into an
IAS, GTR, IVSGDR for which a Breit-Wigner shape is
assumed and a charge-exchange quasi-free continuum.

Using eq. (6), and adjusting the normalisation factor,
α, for 120Sn, the results shown in fig. 5 are obtained. There
is a very nice agreement between these results and the data
obtained with other methods as well as with theoretical
calculations [11,4].

This method would become independent of the theo-
retical calculation to which the ∆Rnp value is normalised if
a proportionality between cross-section and B(IVSGDR)
were obtained similar to that for the Fermi and Gamow-
Teller transitions. This could be realised if known strong
first-forbidden β transitions are also excited in (p, n) or
(3He, t) reactions at energies ≥ 150 MeV/u.

The great advantage of this method over the one dis-
cussed before is that in this case the cross-sections in-
volved are much larger, of the order 10 mb sr−1 com-
pared to 10 µb sr−1, mainly because in the latter case
the experiment requires the measurement of the IVGDR
γ-decay which has a probability of ∼ 10−2. Thus, statis-
tical uncertainties can be much smaller. A disadvantage
is that since no specific signature for IVSGDR excitation
is used, the cross-sections have to be determined from a
deconvolution of the whole triton spectrum with all the
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uncertainties involved, especially with respect to the pa-
rameterisation of the underlying continuum. In principle,
this method can also be used for radioactive nuclei by us-
ing the (p, n), or (3He, t) reaction in inverse kinematics,
provided that beams of radioactive nuclei with energies of
about 150 MeV/u or higher are available. The (3He, t) re-
action has a clear advantage from the experimental point
of view, especially if collider rings are used.
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